First High-Contrast Science with an IFS: the Sub-Stellar Companion to GQ Lup

- Michael McElwain (UCLA)
- Stanimir Metchev (UCLA)
- James Larkin (UCLA)
- OSIRIS commissioning team

GQ Lup B – An Exoplanet or a Brown Dwarf?

- 1–2 *M*_{Jup} planet?
 - VLT AO slit spectroscopy
 - Neuhaüser et al. (2005)

- 10–40 M_{Jup} brown dwarf?
 - Keck AO + OSIRIS spectroscopy
 - McElwain, Metchev, Larkin et al., ApJ, accepted

OSIRIS - A Lenslet Based Integral Field Spectrograph (IFS)

Focus Image onto a Lenslet Array

1. Image on Lenslets

2. Pupil images

3. Pupil images dispersed

4. Extracted Data Cube

Direct Imaging of Sub-Stellar Companions

- laboratory of sub-stellar astronomy:
 - Compare objects at a fixed age and metallicity
- step toward the future imaging of exoplanets

(Golimowski et al. 1998)

GQ Lup A/B

Spectral type: M9-L4

Wavelength [µm]

(Neuhaüser et al. 2005)

cTTS in Lupus 1; age 0.1–2 Myr (Hughes et al. 1994)

The Mass of GQ Lup B

- "hot-start" models predict 3–
 42 M_{Jup}
 - Burrows et al. (1997), Baraffe et al. (2002)
 - uncertain at ≤3 Myr ages
- nucleated instability and collapse models predict 1–2
 M_{Jup}
 - Wuchterl et al. (2000), Wuchterl & Tscharnuter (2003)
 - better at young ages?

Which theoretical models are more accurate?
Is GQ Lup B an exoplanet?

(Neuhaüser et al. 2005)

Steps in Characterizing Sub-Stellar Companions

- Determine age and distance
 - from parent stellar association (best) or primary star
- Determine spectral type, effective temperature
 - direct near-IR spectroscopy (with AO)
- Determine mass, surface gravity
 - from evolutionary models

Keck/OSIRIS Spectra of GQ Lup B

- integral field spectrograph behind Keck II AO system (PI: J. Larkin, UCLA)
- OSIRIS commissioning data (June 2005)

(McElwain, Metchev et al., ApJ, in press)

AO Integral Field Spectroscopy Is More Reliable Than AO Slit Spectroscopy

elevation, differential refraction

H-band
53 mas-wide slit
GQ Lup A/B aligned on sli

- AO slit spectroscopy:
 - slit width (40–100 mas), PSF (40–80 mas) comparable to pointing precision (~20–40 mas)
 - differential refraction (atmosphere, AO transmission optics)
 - especially important in high-contrast regime
- IFS AO spectroscopy :
 - no slit losses due to centering on slit
 - no slit losses due to differential refraction
 - trace PSF centroid as a function of λ

Spectral Classification of Ultra-Cool Objects is Age-Dependent

- spectral type
 - proxy for $T_{\rm eff}$
 - determined by continuum shape in brown dwarfs
- but: young (<100 Myr) brown dwarfs
 - larger radius
 - lower surface gravity $(g = GM/R^2)$
 - weaker K I, Na I absorption
 - weaker H₂ CIA over 1.5–2.5 µm
- spectral classification most reliable from H₂O dip at 1.3 μm (Slesnick et al. 2004)

Keck/OSIRIS Spectra of GQ Lup B

- commissioning OSIRIS data (Aug 2005)
- J- and H-band
- spectral type: M8 ± 2
 - Neuhaüser et al.: M9–L4

GQ Lup B is Hotter and Older Than Inferred by Neuhaüser et al.

- McElwain, Metchev et al.:
 - spectral type: M6–L0 (~2600 K)

age: 1–10 Myr

- Neuhaüser et al. (2005):
 - spectral type: M9–L4 (~2000 K)
 - AO slit losses affecting Kband continuum?
 - weakening H₂ CIA absorption at 1.5–2.5 μm
 - age: 0.1–2 Myr

Testing Evolutionary Models: "Hot-Start" Models Better at ≤3 Myr

(Stassun et al. 2006, Chabrier et al. 2000 models) (Neuhaüser et al. 2005, Wuchterl & Tscharnuter 2003 models)

GQ Lup B is Probably a Brown Dwarf

- McElwain, Metchev et al.:
 - spectral type: M6–L0 (~2600 K)

- age: 1–10 Myr
- "hot-start" models (Burrows et al. 1997; Chabrier et al. 2000)
 - \Rightarrow mass: 10–40 M_{Jup}

- Neuhaüser et al. (2005):
 - spectral type: M9–L4 (~2000 K)
 - AO slit losses affecting Kband continuum?
 - weakening H₂ CIA absorption at 1.5–2.5 µm
 - age 0.1–2 Myr
- "cold-start" models (Wuchterl & Tscharnuter 2003)
 - \Rightarrow mass: 1–2 M_{Jup}

Marois et al. (accepted), $0.6-3.5 \mu m$ SED analysis: $9-20 M_{Jup}$

Summary

- AO integral field spectroscopy is more reliable than AO slit spectroscopy
- GQ Lup B is hotter (M6-L0) and older (1-10 Myr) than initially reported by Neuhaüser et al. (2005)
- Empirical young BD masses are more consistent with the hot start evolutionary models
- GQ Lup B is probably a brown dwarf and not an exoplanet

Thanks to the OSIRIS team

ACADEMIC

- Principal Investigator James Larkin (UCLA)
- Project Scientist Andreas Quirrenbach (University of Heidelberg)
- Co-Investigator Alfred Krabbe (Cologne)
- Research Astronomer Inseok Song, Christof Iserlohe (Cologne)
- Graduate Students Matthew Barczys, David LaFreniere*, Michael McElwain, Tommer Wizansky, Shelley Wright
- Close collaboration Ian McLean, Eric Becklin

ENGINEERING

- Project Engineer George Brims
- Mechanical Ted Aliado, John Canfield, Nick Magnone, Evan Kress
- Software Tom Gasaway (UCSD), Chris Johnson, John Milburn, Jason Weiss
- Electrical Ken Magnone, **Michael Spencer**, Gunnar Skulason,
- CARA Paola Amico, Allan Honey, Junichi Meguro, Grant Tolleth, & others

ADMINISTRATIVE

- CARA Project Manager Sean Adkins, David Sprayberry*
- Management Juleen Moon, Jim Kolonko
- Secretarial Melinda Laraneta

(lead engineer in each area for OSIRIS in **bold**, * denotes non-active team members)